
Large Vector-Field Visualization,
Theory and Practice:

Large Data and Parallel Visualization
Hank Childs +

D. Pugmire, D. Camp, C. Garth,
G. Weber, S. Ahern, & K. Joy

Lawrence Berkeley National Laboratory /
University of California at Davis

October 25, 2010

Outline

•  Motivation
•  Parallelization strategies
•  Master-slave parallelization
•  Hybrid parallelism

Outline

•  Motivation
•  Parallelization strategies
•  Master-slave parallelization
•  Hybrid parallelism

Supercomputers are generating large data sets
that often require parallelized postprocessing.

217 pin reactor cooling simulation.
Nek5000 simulation on ¼ of Argonne BG/P.
Image credit: Paul Fischer using VisIt

1 billion element
unstructured mesh

Communication between “channels”
are a key factor in effective cooling.

Particle advection can be used to
study communication properties.

This sort of analysis requires many
particles to be statistically significant.

Place thousands of particles
in one channel

Observe which channels the
 particles pass through

Observe where particles come out
(compare with experimental data)

How can we parallelize
this process?

Repeat for other channels

Outline

•  Motivation
•  Parallelization strategies
•  Master-slave parallelization
•  Hybrid parallelism

For embarrassingly parallel algorithms, the most
common processing technique is pure parallelism.

P0
P1

P3

P2

P8 P7P6
P5

P4

P9

Pieces of
data

(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization
data flow network

P0 P3P2

P5P4 P7P6

P9P8

P1

Parallel Simulation Code

Particle advection is not
embarrassingly parallel.

So how to parallelize?
A: it depends

Particle advection:
Four dimensions of complexity

Data set size

vs

Seed set distribution

vs

Seed set size

vs

Vector field complexity

Do we need parallel processing?
When? How complex?

•  Data set size?
•  Not enough!

•  Large #ʼs of particles?

Parallelization for small data and a
large number of particles.

Read Advect Render

Processor 1

Read Advect Render

Processor 2

Read Advect Render

Processor 0

Parallelized visualization
data flow network

File

Simulation
code

GPU-accelerated approaches
follow a variant of this model.

The key is that the data is small
enough that it can fit in memory.

This scheme is referred to as
parallelizing-over-particles.

Do we need advanced parallelization
techniques? When?

•  Data set size?
•  Not enough!

•  Large #ʼs of particles?
•  Need to parallelize, but embarrassingly parallel OK

•  Large #ʼs of particles + large data set sizes

Parallelization for large data with
good “distribution”.

P0
P1

P3

P2

P8 P7P6
P5

P4

P9

Pieces of
data

(on disk)

P0 P3P2

P5P4 P7P6

P9P8

P1

Parallel Simulation Code

Read Advect Render

Processor 1

Read Advect Render

Processor 2

Read Advect Render

Processor 0

Parallelized visualization
data flow network

This scheme is referred to as
parallelizing-over-data.

Do we need advanced parallelization
techniques? When?

•  Data set size?
•  Not enough!

•  Large #ʼs of particles?
•  Need to parallelize, but embarrassingly parallel OK

•  Large #ʼs of particles + large data set sizes
•  Need to parallelize, simple schemes may be OK

•  Large #ʼs of particles + large data set sizes +
(bad distribution OR complex vector field)
•  Need smart algorithm for parallelization

Parallelization with big data & lots of
seed points & bad distribution

  Two extremes:
•  Partition data over processors

and pass particles amongst
processors
− Parallel inefficiency!

•  Partition seed points over
processors and process
necessary data for advection
− Redundant I/O!

Notional streamline
example

P0 P0 P0 P0 P0

P1 P1 P1 P1 P1

P2 P2 P2 P2 P2

P3 P3 P3 P3 P3

P4 P4 P4 P4 P4

P0

P1
P2

P3
P4

Parallelizing Over I/O Efficiency
Data Good Bad
Particles Bad Good

Parallelize
over particles

Parallelize
over data Hybrid algorithms

Outline

•  Motivation
•  Parallelization strategies
•  Master-slave parallelization
•  Hybrid parallelism

The master-slave algorithm is an
example of a hybrid technique.

•  “Scalable Computation of Streamlines on Very Large
Datasets”, Pugmire, Childs, Garth, Ahern, Weber. SC09
•  Many of the following slides compliments of Dave Pugmire.

•  Algorithm adapts during runtime to avoid pitfalls of
parallelize-over-data and parallelize-over-particles.
•  Nice property for production visualization tools.

•  Implemented inside VisIt visualization and analysis
package.

Master-Slave Hybrid Algorithm
•  Divide processors into groups of N

•  Uniformly distribute seed points to each group

Master:
-  Monitor workload
-  Make decisions to optimize
resource utilization

Slaves:
-  Respond to commands
from Master
-  Report status when work
complete

Master Process Pseudocode

Master()
{
 while (! done)
 {
 if (NewStatusFromAnySlave())
 {
 commands = DetermineMostEfficientCommand()

 for cmd in commands
 SendCommandToSlaves(cmd)
 }
 }
}

What are the possible
commands?

Commands that can be issued by master

Master Slave

Slave is given a streamline that
is contained in a block that is
already loaded

1. Assign / Loaded Block
2. Assign / Unloaded Block

3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Master Slave

Slave is given a streamline
and loads the block

Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block

3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Master Slave

Load

Slave is instructed to load a
block. The streamline in that
block can then be computed.

Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block

3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Master Slave

Send to J

Slave J

Slave is instructed to send a
streamline to another slave that
has loaded the block

Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block

3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Master Process Pseudocode

Master()
{
 while (! done)
 {
 if (NewStatusFromAnySlave())
 {
 commands = DetermineMostEfficientCommand()

 for cmd in commands
 SendCommandToSlaves(cmd)
 }
 }
} * See SC 09 paper

for details

Master-slave in action

P0 P0

P1

P1
P2

P2 P3
P4

Iteration Action

0 P0 reads B0,
P3 reads B1

1 P1 passes
points to P0,
P4 passes
points to P3,
P2 reads B0

0: Read

0: Read

Notional streamline
example

1: Pass

1: Pass
1: Read

-  When to pass and when to read?
-  How to coordinate communication? Status?
Efficiently?

Algorithm Test Cases

- Core collapse supernova simulation
- Magnetic confinement fusion simulation
- Hydraulic flow simulation

Particles Data Hybrid

Workload distribution in supernova
simulation

Parallelization by:

Colored by processor doing integration

Workload distribution in parallelize-over-
particles

Too much I/O

Workload distribution in parallelize-over-
data

Starvation

Workload distribution in hybrid algorithm

Just right

Comparison of workload distribution

Astrophysics Test Case:
Total time to compute 20,000 Streamlines

S
ec

on
ds

S
ec

on
ds

Number of procs Number of procs

Uniform
Seeding

Non-uniform
Seeding

Data Part-
icles

Hybrid

Astrophysics Test Case:
Number of blocks loaded

B
lo

ck
s

lo
ad

ed

B
lo

ck
s

lo
ad

ed

Number of procs Number of procs

Data Part-
icles

Hybrid

Uniform
Seeding

Non-uniform
Seeding

Outline

•  Motivation
•  Parallelization strategies
•  Master-slave parallelization
•  Hybrid parallelism

Are today’s algorithms going to fit well on
tomorrow’s machines?

  Traditional approach for parallel
visualization – 1 core per MPI task – may
not work well on future supercomputers,
which will have 100-1000 cores per node.
•  Exascale machines will likely have

O(1M) nodes … and we anticipate in situ
particle advection.

Hybrid parallelism blends distributed- and
shared-memory parallelism concepts.

The word “hybrid” is being used in two
contexts…

•  The master-slave algorithm is a hybrid algorithm,
sharing concepts from both parallelization-over-data and
parallelization-over-seeds.

•  Hybrid parallelism involves using a mix of shared and
distributed memory techniques, e.g. MPI + pthreads or
MPI+CUDA.

•  One could think about implement a hybrid particle
advection algorithm in a hybrid parallel setting.

What can we learn from a hybrid
parallel study?

•  How do we implement parallel particle advection
algorithms in a hybrid parallel setting?

•  How do they perform?
•  Which algorithms perform better? How much better?
•  Why?

Streamline Integration Using MPI-Hybrid
Parallelism on a Large Multi-Core Architecture

by David Camp, Christoph Garth,
Hank Childs, Dave Pugmire and Ken Joy

Accepted to TVCG

Streamline integration using MPI-hybrid
parallelism on a large multi-core architecture

•  Implement parallelize-over-data and parallelize-over-
particles in a hybrid parallel setting
•  Did not study the master-slave algorithm

•  Run series of tests on NERSC Franklin machine (Cray)
•  Compare 128 MPI tasks (non-hybrid)

 vs 32 MPI tasks / 4 cores per task (hybrid)
•  12 test cases: large vs small # of seeds

 uniform vs non-uniform seed locations
 3 data sets

Hybrid parallelism for parallelize-over-data

•  Expected benefits:
•  Less communication and communicators
•  Should be able to avoid starvation by

sharing data within a group.

Starvation

Measuring the benefits of hybrid
parallelism for parallelize-over-data

Gantt chart for parallelize-over-data

Hybrid parallelism for parallelize-over-
particles

•  Expected benefits:
•  Only need to read blocks once for node, instead of once

for core.
•  Larger cache allows for reduced reads
•  “Long” paths automatically shared among cores on node

Measuring the benefits of hybrid
parallelism for parallelize-over-particles

Gantt chart for parallelize-over-particles

Summary of Hybrid Parallelism Study

•  Hybrid parallelism appears to be extremely beneficial to
particle advection.

•  We believe the parallelize-over-data results are highly
relevant to the in situ use case.

•  Although we didn’t implement the master-slave algorithm,
we believe the benefits shown at the spectrum extremes
provide good evidence that hybrid algorithms will also
benefit.

•  Implemented on VisIt branch, goal to integrate into VisIt
proper in the coming months.

Summary for Large Data and
Parallelization

•  The type of parallelization required will vary based on
data set size, number of seeds, seed locations, and
vector field complexity

•  Parallelization may occur via parallelization-over-data,
parallelization-over-particles, or somewhere in between
(master-slave). Hybrid algorithms have the opportunity to
de-emphasize the pitfalls of the traditional techniques.

•  Hybrid parallelism appears to be very beneficial.
•  Note that I said nothing about time-varying data…

Thank you for your attention!

•  Acknowledgments: DoE SciDAC program, VACET
•  Participants: Hank Childs (hchilds@lbl.gov),

Dave Pugmire (ORNL), Dave Camp (LBNL/UCD),
Christoph Garth (UCD), Sean Ahern (ORNL),
Gunther Weber (LBNL), and Ken Joy (UCD)

•  Questions?

